MEMS-assisted fiber-chip coupling

Xaveer Leijtens¹, Rui Santos², Marcel Tichem³, Kerstin Wörhoff⁴ and Kevin Williams¹

1. Institute for Photonic Integration, TU Eindhoven
2. Smart Photonics, Eindhoven
3. Delft University of Technology, Delft
4. LioniX BV, Enschede
outline

• fiber-chip coupling
 • mode mismatch: fiber ↔ waveguide
 • alignment requirements

• MEMS solution for easy sub-micron alignment
 • concept
 • results

• conclusions
fiber-chip coupling

- problem: mode mismatch: fiber ↔ waveguide

- increase spot size at PIC waveguide
 - long taper
 - pitch \(\geq 127 \, \mu m \)

- decrease fiber spot size
 - pitch ?
 - sub-micron alignment accuracy
MEMS-based solution

- TriPleX interposer for adapting spot size from fiber to InP waveguide
- Placement on carrier with moderate accuracy (~2 μm)
- MEMS actuated waveguides for precision alignment (< 100 nm)

interposer functions:
- Spot size reduction
- Pitch reduction
- Flexible waveguides
- Actuators for 3 critical motion directions: T_x, T_y, R_z
alignment procedure

- position InP: $\sim 2 \, \mu m$
alignment procedure

- position InP ~2 μm
- position silicon/TriPleX ~2 μm
alignment procedure

- position InP ~2 μm
- position silicon/TriPleX ~2 μm
- actuate MEMS <0.1 μm
fabricated structures

- two sets of actuators: left-right
- separate waveguides and actuators
- up/down and roll movement

![Image of fabricated structures]

- Silicon underneath silicon removed
- Actuator beams
- Waveguide beams
- Actuator beams

\[16 \times 16 \, \mu m^2 \]

\[\approx 750 \, \mu m \]
lateral movement

\[T_x, R_z \]
lateral movement

\[T_x, R_z \quad \text{and} \quad T_y \]
lateral movement

T_x, R_z T_y

“chevron” actuators
required alignment tolerance

- \(T_z = 1.5 \pm 0.5 \, \mu m \). No actuation
- \(\pm 0.1 \, \mu m \) waveguide-to-waveguide actuation with 3 actuators, \(T_x, T_y, R_z \).

1/e\(^2\) diameter
\(~3 \, \mu m\)
mode shape in waveguide beam

mode profiles

1/e^2-diameter ~3 µm

spot at tip of flexible beam

MEMS-assisted fiber-chip coupling - ECIO 2017 Eindhoven

XL-13
movement range of actuators

- movement of spot-center on camera
 - 0—10 V ↔ 0—100 mW

- ~ 8 µm movement range
- 0.1 V ≈ <0.1 µm
lab-bench test: coupling InP ↔ TriPleX

11-axis alignment
measurement results

- MEMS flexible waveguide beams spaced at 250 µm
- coupled to two InP photodetectors on Oclaro test chip
- optical power versus displacement
conclusions

- fiber-chip interposer with MEMS actuators fabricated
- MEMS actuation of flexible waveguides demonstrated
- movement range of 8 μm sufficient to overcome initial misalignment
- sub-micron positioning resolution demonstrated
• fiber-chip interposer with MEMS actuators fabricated
• MEMS actuation of flexible waveguides demonstrated
• movement range of 8 μm sufficient to overcome initial misalignment
• sub-micron positioning resolution demonstrated

Thank you!